Quasilinearization numerical scheme for fully nonlinear parabolic problems with applications in models of mathematical finance

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A numerical scheme for solving nonlinear backward parabolic problems

‎In this paper a nonlinear backward parabolic problem in one‎ ‎dimensional space is considered‎. ‎Using a suitable iterative‎ ‎algorithm‎, ‎the problem is converted to a linear backward parabolic‎ ‎problem‎. ‎For the corresponding problem‎, ‎the backward finite‎ ‎differences method with suitable grid size is applied‎. ‎It is shown‎ ‎that if the coefficients satisfy some special conditions‎, ‎th...

متن کامل

a numerical scheme for solving nonlinear backward parabolic problems

‎in this paper a nonlinear backward parabolic problem in one‎ ‎dimensional space is considered‎. ‎using a suitable iterative‎ ‎algorithm‎, ‎the problem is converted to a linear backward parabolic‎ ‎problem‎. ‎for the corresponding problem‎, ‎the backward finite‎ ‎differences method with suitable grid size is applied‎. ‎it is shown‎ ‎that if the coefficients satisfy some special conditions‎, ‎th...

متن کامل

Quasilinearization Methods for Nonlinear Parabolic Equations with Functional Dependence

We consider a Cauchy problem for nonlinear parabolic equations with functional dependence. We prove convergence theorems for a general quasilinearization method in two cases: (i) the Hale functional acting only on the unknown function, (ii) including partial derivatives of the unknown function. 2000 Mathematics Subject Classification: 35K10, 35K15, 35R10.

متن کامل

A Probabilistic Numerical Method for Fully Nonlinear Parabolic PDEs

We consider the probabilistic numerical scheme for fully nonlinear PDEs suggested in [10], and show that it can be introduced naturally as a combination of Monte Carlo and finite differences scheme without appealing to the theory of backward stochastic differential equations. Our first main result provides the convergence of the discrete-time approximation and derives a bound on the discretizat...

متن کامل

Mathematical finance: basic models and unsolved problems

Mathematical finance is a relatively new mathematical field. It was in a phase of explosive growth last 10-15 years, and there is very indication it will continue growing for a while yet. The growth is due to a combination of demand from financial institutions and a breakthrough in the mathematical theory of option pricing. The talk will outline basic mathematical theorems and ideas used here, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical and Computer Modelling

سال: 2013

ISSN: 0895-7177

DOI: 10.1016/j.mcm.2013.01.008